
111

Revista de Economía Aplicada Número 59 (vol. XX), 2012, págs. 111 a 134E
A

VOLATILITY REGIMES
FOR THE VIX INDEX*

JACINTO MARABEL ROMO
University of Alcalá, Madrid

This article presents a Markov chain framework to characterize the be-
havior of the CBOE Volatility Index (VIX index). Two possible regimes
are considered: high volatility and low volatility. The specification ac-
counts for deviations from normality and the existence of persistence in
the evolution of the VIX index. Since the evolution of the VIX index
seems to indicate that its conditional variance is not constant over time, I
consider two different versions of the model. In the first one, the vari-
ance of the index is a function of the volatility regime, whereas the sec-
ond version includes ARCH and GARCH specifications for the condi-
tional variance of the index.
The empirical results show that the model adjusts quite well to the vola -
ti lity regimes corresponding to the VIX index. The information provided
by the model may be a useful tool for investment decisions, as well as
for hedging purposes regarding the volatility of a certain asset.
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I
n the Black-Scholes (1973) model the instantaneous volatility corresponding
to the underlying asset price process is assumed to be constant. However,
Fisher Black (1976) stated that if we use the standard deviation of possible fu-
ture returns on a stock as a measure of its volatility, then it is not reasonable to
take that volatility as constant over time. In addition, empirical evidence

shows that implied volatility, far from remaining static over time, evolves stochas-
tically. Examples of this fact can be found in Franks and Schwartz (1991), Avel-
laneda and Zhu (1997), Derman (1999), Bakshi, Cao and Chen (2000), Cont and da
Fonseca (2001), Cont and da Fonseca (2002), Daglish, Hull and Suo (2007) and
Carr and Wu (2009).

As evidenced by Carr and Lee (2009), in recent years, new derivatives assets
are emerging. These derivatives have some measure of volatility as the underlying

(*) The content of this paper represents the author’s personal opinion and does not reflect the
views of BBVA. I thank two anonymous referees for useful comments. I also thank seminar partic-
ipants at XII Iberian-Italian Congress of Actuarial and Financial Mathematics (Lisbon) for helpful
discussions.



asset. In particular, in 2004, the Chicago Board Options Exchange (CBOE) intro-
duced futures traded on the CBOE Volatility Index (VIX) and, in 2006, options on
that index. The VIX index started to be calculated in 1993 and was originally de-
signed to measure the market’s expectation of 30-day at-the-money implied
volatility associated with the Standard and Poor’s 100 index. But with the new
methodology1 implemented in 2003, the squared of the VIX index approximates
the variance swap rate or delivery price of a variance swap, obtained from the Eu-
ropean options corresponding to the Standard and Poor’s 500 index with maturity
within one month. The variance swap is a forward contract on the annualized real-
ized variance of a certain asset. As with all forward contracts or swaps, the fair
value of variance at any time is the delivery price that makes the swap currently
have zero value. Therefore, the absence of arbitrage opportunities implies that the
variance swap rate equals the expected value of the realized variance under the
risk-neutral probability measure.

Carr and Wu (2006) find a strong negative correlation between the changes
in the VIX volatility index and the performance corresponding to the Standard
and Poor’s s 500 index. This fact indicates that the volatility tends to be higher
when the equity market falls.

The VIX index evolves stochastically over time and usually exhibits rela-
tively persistent changes of level generated by news about the evolution of the
economy and/or financial crisis. Bali and Ozgur (2008) show that the existence
of persistence and mean reversion is quite relevant in stock market volatility. To
account for this persistence Grünbichler and Longstaff (1996) used the square
root process to model the behavior of a standard deviation index such as the VIX
index. Detemple and Osakwe (2000) proposed a log-normal Ornstein-Uhlenbeck
process. Vasicek (1977) used the Ornstein-Uhlenbeck process to describe the
movement of short-term interest rates and Phillips (1972) showed that the exact
discrete model corresponding to this specification is given by a Gaussian first
order autoregressive process (AR(1) process) if the variable is sampled at equally
spaced discrete intervals.

The time evolution of the VIX index suggests that it could be possible to rep-
resent the behavior of this variable using a model in which the process for the
VIX index can be in a regime of high volatility or, alternatively, in a low volatility
regime in such a way that the change between the two regimes is the result of a
Markov chain process. Hamilton (1989) established a similar approach to repre-
sent the evolution of the economy. In his model, the output mean growth rate de-
pends on whether the economy is in a phase of expansion or in a phase of reces-
sion. The model postulates the existence of a discrete and unobservable variable,
named state variable or regime variable, which determines the state of the econo-
my at each point in time.

This article introduces a regime-switching framework to characterize the evo-
lution of the VIX index that postulates the existence of two possible regimes: high
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(1) For a definition of the methodology and the history of the VIX index, see CBOE (2009) and
Carr and Wu (2006).



volatility and low volatility and assumes that the state variable governing the tran-
sition between the two regimes is the result of a Markov process. The specification
considers a t-distribution and, therefore, allows for deviations from normality in
the distribution corresponding to VIX index. Note that the t-distribution includes
the normal distribution as the limiting case where the degrees of freedom tend to
infinity. To account for the observed persistence in the evolution of the VIX index,
I postulate an AR(1) specification where the mean corresponding to that index de-
pends on volatility regime. Since the evolution of the VIX index seems to indicate
that its conditional variance is not constant over time, I consider two different ver-
sions of the model. In the first one, the variance of the index is also a function of
volatility regime, whereas the second version includes ARCH and GARCH specifi-
cations for the conditional variance of the VIX index. For comparison, I also con-
sider a standard AR specification for the mean of the VIX index that allows for
ARCH and GARCH effects in the conditional variance.

The regime-switching model allows the estimation of the average persistence
of each regime and the probability of being in a particular regime. This informa-
tion is a useful tool for investment decisions, as well as for hedging purposes re-
garding the volatility of a certain asset. The empirical results show that the model
is able to characterize the volatility regimes corresponding to the VIX index quite
accurately. Moreover, the estimated volatility corresponding to the VIX index is
much higher in the high volatility regime.

Dueker (1997) points out that the volatility of financial assets usually ex-
hibits discrete shifts and mean reversion. This author applies a GARCH/Markov-
switching framework, using daily percentage changes in the Standard and Poor’s
500 index, to characterize the evolution of the VIX index. The model presented in
this article differs from the approach of Dueker (1997) in that I postulate a speci-
fication for the VIX index rather than for the returns of the stock market index.

The rest of the article is structured as follows. Section 2 focuses on the fea-
tures and calculations of the VIX index and examines the data. Section 3 presents
the specifications used in this article to characterize the evolution of the VIX
volatility index. Section 4 shows the estimation results and provides in-sample
and out-of-sample performance measures for each model considered. Finally,
Section 5 provides concluding remarks.

1. CONSTRUCTION OF THE VIX INDEX

1.1. The VIX index and the variance swap rate
As Carr and Wu (2006) point out, the square of the VIX index approximates

the 30-day variance swap rate of variance swaps corresponding to the Standard and
Poor’s 500 index. Formally, a variance swap is a forward contract on the annualized
historical variance. Its payoff at maturity is given by N(σR

2 – VSR), where σR
2 repre-

sents the annualized realized variance during the lifetime of the contract, VSR is
the variance swap rate and N is the notional amount expressed in currency units.

Let us assume that the underlying asset, whose time t price is denoted by St,
follows a geometric Brownian motion where the drift μt, as well as the instanta-
neous volatility σt may depend on time and other stochastic variables:
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where Wt
P is a Wiener process associated with the real probability measure P. A

particular case is the Black-Scholes (1973) model, where μt and σt are assumed to
be constant. The realized variance between the instant t = 0 and the instant t = T is
defined by the following expression:
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Let vs0 denote the time t = 0 value corresponding to the variance swap and
let us assume that the notional amount equals one. It is possible to use the funda-
mental theorem of asset pricing to value this contract under the risk neutral proba-
bility measure Q:

vs P T E VSRQ0
0= ( ) −⎡⎣ ⎤⎦, Ψ

where Q is the probability measure such that asset prices expressed in terms of
the current account are martingales and P(0, T) is the time t = 0 price of a zero
coupon bond which pays a currency unit at time t = T. The variance swap rate
VSR is chosen so that the net present value of the contract equals zero. Thus, the
following condition must hold:
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Therefore, we have to set a replication strategy that allows replicating the re-
alized variance. Demeterfi et al. (1999) show that it is possible to obtain the fol-
lowing replicating portfolio corresponding to the variance swap rate2:

(2) Although Demeterfi et al. (1999) do not consider the existence of dividends, in this article I
present the variance swap rate obtained under the assumption of a continuous dividend yield for
the underlying asset.
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where the continuously compounded risk-free rate r, as well as the dividend yield

q, are assumed to be constant.             is the time t = 0 value of a forward

contract on the underlying asset with maturity t = T; C0T (K) is the time t = 0 value
of a European call with maturity t = T and strike price K, whereas P0T (K) denotes
the price corresponding to a European put with the same features. Finally, S* de-
notes the strike price which represents the limit between liquid calls and puts.
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The square root of equation [1] can be interpreted as the continuous-time
counterpart to the formula used by the CBOE for the VIX index calculation. This
calculation is based on a weighted average of prices of European options corre-
sponding to different strike prices which are associated with different implied
volatility levels for the Standard and Poor’s 500 index.

1.2. Data
I consider monthly data associated with the VIX index during the period Janu-

ary 1990 to September 2010. The data are available at www.cboe.com/micro/vix/his-
torical.aspx. As previously said, the methodology to calculate the VIX index was
modified in 2003. The CBOE has used historical data corresponding to listed op-
tions on the Standard and Poor’s 500 index, to generate historical prices for the
VIX index with the new methodology.
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Figure 1: MONTHLY EVOLUTION OF THE VIX INDEX (PANEL A) AND THE

STANDARD AND POOR’S 500 INDEX (PANEL B) DURING THE PERIOD

FEBRUARY 1990 TO SEPTEMBER 2010

Source: Panel b captures the month-end prices of the Standard and Poor’s 500 index, obtained from
Bloomberg, as a percentage of the month-end value corresponding to February 1990. The data co-
rresponding to the VIX index are available at www.cboe.com/micro/vix/historical.aspx.



Figure 1 shows the monthly evolution of the VIX index during the period an-
alyzed, as well as the performance of the Standard and Poor’s 500 index. Panel a
presents the values of the VIX index, whereas panel b captures the month-end val-
ues associated with the Standard and Poor’s 500 index as a percentage of the
month-end price corresponding to February 1990. As we can see from the figure,
the two indexes move in opposite directions. The existence of negative correlation
between asset returns and volatilities accounts for the leverage effect introduced
by Black (1976): for a given debt level, a decrease in the equity value implies
greater leverage for the companies, which leads to an increase of the risk and
volatility levels. Other explanations for the existence of this negative correlation
can be found in Campbell and Kyle (1993) and Bekaert and Wu (2000).

Figure 1 also shows that the VIX index displays a relatively persistent
switching of regime. Furthermore, this index seems to be more volatile in the pe-
riods in which the index reaches its highest values. These facts indicate that it
might be appropriate to characterize the evolution of this index using a regime-
switching model in which the variable that governs the transition between re gi mes
is the result of a Markov chain.
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Figure 2: AUTOCORRELATION (AC) AND PARTIAL AUTOCORRELATION (PAC)
FUNCTIONS CORRESPONDING TO THE VIX INDEX SQUARED

Source: Own elaboration.

Although not reported in the article for the sake of brevity, I carried out unit
root tests and the null hypothesis of the existence of a unit root in the level of the
VIX index was rejected. This result is in line with the empirical findings of Har-
vey and Whaley (1992) regarding the mean reversion of volatility.



Figure 2 reports the sample autocorrelation and partial autocorrelation func-
tions associated with the VIX index squared. The figure shows a decrease in the
autocorrelation function, whereas the partial autocorrelation function tends quick-
ly to zero for lags of order higher than one, indicating a possible AR(1) pattern of
behavior for the VIX index squared. In this sense, a Markov-switching specifica-
tion for the mean of the VIX index combined with an ARCH specification for its
conditional variance may be a good candidate to model the evolution of this index3.
The next section presents the specifications of the models used in this article to
represent the behavior of the VIX index.

2. MODEL SPECIFICATIONS FOR THE VIX INDEX

2.1. Standard specification
As a starting point, I consider an AR(1) specification to characterize the time

evolution of the VIX index, based on the theoretical models postulated by Grün-
bichler and Longstaff (1996) and Detemple and Osakwe (2000). As Figure 1
shows, the volatility of the VIX index seems to be time-varying and periods of
high volatility tend to cluster. Moreover, Figure 2 indicates the existence of serial
correlation for the VIX index squared. To capture these effects, I also consider an
ARCH(1) model as introduced by Engle (1982), as well as its extension to gener-
alized ARCH (GARCH) presented by Bollerslev4 (1986).

Let Vt represent the time t value of the VIX index. The first specification con-
sidered to characterize its evolution is given by the following equation:
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(3) I thank anonymous referee for this consideration.
(4) Although not reported in the article, I also considered ARMA specifications for the mean of
the VIX index but some of the coefficients were not significantly different from zero and the speci-
fications did not provide improvements in the results.
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where Ωt–1 represents the observations obtained until date t – 1. Under this model
the unconditional mean corresponding to the VIX index is given by μ, ϕ repre-
sents the degree of persistence and the unconditional variance is given by:

For δ = 0, I call the specification of equation [2] the standard ARCH model.
Conversely, for δ ≠ 0, I denote the specification of equation [2] the standard
GARCH model. Note that the nonnegativity requirement for the conditional vari-
ance is satisfied if α ≥ 0, θ ≥ 0 and δ ≥ 0, whereas εt

2 is covariance stationary pro-
vided that θ + δ < 1.



2.2. Regime-switching model specifications for the VIX index
I now consider a model in which the mean value of the index at every point

in time depends on the state variable zt. I consider two possible regimes or states:
low volatility (zt = 1) and high volatility (zt = 2). Moreover, I postulate a model
for the state variable zt in which the state of the world is the result of an unobserv-
able Markov chain process, with zt and εr independent for every t and r. The
Markov process does not depend on the past values of Vt:
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As Hamilton (1994) points out, the advantage of using a specification based
on Markov chains is its great flexibility since, using different combinations of pa-
rameters, it is possible to capture a broad range of patterns of behavior.

The model specification assumes a Student’s t-distribution. Note that, in the
case of normality, a large innovation in the low volatility period will lead to an earlier
switch to the high-volatility regime, even if it is a single outlier in an otherwise quiet
period. Hence, this article considers a t-distribution that enhances the stability of the
regimes and includes the normal distribution as the limiting case where the degrees
of freedom tend to infinity. Therefore, the general specification of the model is:

Vt = μzt
+ ϕ (Vt–1 – μzt–1

) + εt

εt|Ωt–1 ~ Student – t (0, σt
2, v) [4]

where the Student’s t-distribution is given by:

tt tx 2

1
0

1

2

2

| , , ;ϕ ν

ν

ν
σ( ) =

+⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

−Ω
Γ

Γ
⎞⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟ +

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

=
−

− +

λ
πν

λ
ν

λ ν
ν

ν

t t

t

tx
1

2 2

1

2

1

22

1
2σ t

[5]

where ν represents the degrees of freedom, the location parameter is assumed to be
zero and σt

2 denotes the scale parameter. The Student’s t-distribution verifies that:
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Note that, for the particular case of ν = 1, the t-distribution simplifies the
Cauchy distribution. The model of equation [4] considers an AR(1) specification
for the level of the VIX index, where the mean value of the index is a function of
volatility regime. Regarding the specification for its conditional variance, I con-
sider three alternative models. Under the first one, the conditional variance is also
a function of volatility regime, whereas the second model combines the Markov
chain setting with mean reversion for the level of the VIX index and an ARCH(1)



specification for its conditional variance. Finally, the third model considered is a
generalization of the second one and it introduces a GARCH(1,1) specification for
the conditional variance.

Under the first version of the model, called Markov-switching in mean and
variance (MSMV) model, the conditional variance is given by:
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Under the second version of the model, denoted as Markov-switching in
mean and ARCH in variance (MSM-ARCHV) model, the conditional variance
takes the following form:

Finally, under the third version of the model, denoted as Markov-switching
in mean and GARCH in variance (MSM-GARCHV) model, we can express the
conditional variance as follows:

In all these cases, it is possible to define a new regime variable st as follows:
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Therefore, the state variable has the following transition matrix:

Let ω denote the parameter vector. In the case of the MSMV model, this vec-
tor will take the form ω = (μ1, μ2, ϕ, σ1

2, σ2
2, p11, p22, ν)´ whereas, in the case of

the MSM-ARCHV model, the parameter vector is given by ω = (μ1, μ2, ϕ, α, θ,
p11, p22, ν)´. Finally, under the MSM-GARCHV model, the parameter vector is ω =
(μ1, μ2, ϕ, α, θ, δ, p11, p22, ν)´.

The regime-switching models can be estimated by maximum likelihood. Ap-
pendix A provides detailed derivations of the elements used in the estimation al-
gorithm.

(i) Probability of being in each regime based on data obtained until
the previous period
Let hj

t+1|t denote the probability of being in regime j in period t + 1 given ob-
servations obtained until date t. This probability is given by:



In vector form, the previous expression reduces to:
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where hj
t+1|t and ht|t are (4 × 1) vectors.

(ii) Log-likelihood function for Vt

Let L(ω) denote the log-likelihood function evaluated at the true parameter
vector. Appendix A shows that this function takes the following form:

where 1 is a (4 × 1) vector of ones, the symbol ° represents element-by-element
multiplication and kt is another (4 × 1) vector which includes the density func-
tions corresponding to the VIX index given the four possible values for the state
variable st. Hence, kj

t = f(Vt |st = j, Ωt–1; ω) is given by:
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where σt
2 is given by equation [6] for the MSMV model, by expression [7] for the

MSM-ARCHV model and, finally, by equation [8] for the MSM-GARCHV model.

(iii) Probability of being in each regime based on data obtained through
the current period
Appendix A shows that it is possible to obtain the following expression for the

probability of being in regime j in period t, given observations obtained through
that date hj

t|t:

h
h k

f V
jt t

j t t
j

t
j

t t
|

|

| ;
,= ( )

−

−

1

1
Ω ω

=1 2,3,4 [11]

where f(Vt |Ωt–1; ω) represents the density function associated with the VIX index
based on data obtained until the previous period. Equation [11] can be expressed in
vector form as follows:



Note that, from the law of Total Expectations, the expected value of the VIX
index based on data obtained until date t – 1 is given by:
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with:

Using equations [9], [10] and [12], as well as an initial value for the parame-
ters of the model and for h2|1, it is possible to estimate the unknown parameters
corresponding to the regime-switching specifications.

3. EMPIRICAL RESULTS

This section applies the models presented in the previous section to the
monthly data corresponding to the evolution of the VIX index during the period
January 1990 to September 2010. I consider the data associated with the period
January 1990 to October 2009 to estimate the parameters of the different models
and I evaluate the out-of-sample empirical performance of the models over the pe-
riod November 2009 to September 2010. In this period, it is possible to identify
three volatility patterns. The first one includes a period of low volatility associat-
ed with the moments previous to the European debt crisis originated at the begin-
ning of May 2010. The second period coincides with the European debt crisis. Fi-
nally, we have a medium volatility pattern, which started after the publication of
the stress tests corresponding to the European banks in July 2010. These three dif-
ferent patterns offer a quite interesting testing environment to analyze the out-of-
sample performance of the models considered in the article.

3.1. Estimation results
Table 1 shows the maximum likelihood estimators, as well as their standard

errors in parentheses, obtained from the numerical optimization of the conditional
log-likelihood function for each of the models considered. In particular, the table
reports the estimated parameters associated with the standard ARCH model5 of

(5) The standard GARCH specification did not improve the results with respect to the Standard
ARCH model and is not reported in the article for the sake of brevity.
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Table 1: ESTIMATION RESULTS

Dependent variable: VIX index
Number of observations: 238
Sample period: January 1990 - October 2009

Standard MSM- MSM-
ARCH MSMV ARCHV GARCHV

μ 7.868
(1.587)

μ1 13.933 13.782 13.841
(0.652) (0.528) (0.571)

μ2 20.429 21.934 22.166
(1.278) (0.828) (0.938)

ϕ 0.807 0.749 0.649 0.689
(0.022) (0.051) (0.039) (0.041)

α 9.719 6.423 2.459
(0.844) (1.918) (1.249)

θ 0.435 0.676 0.390
(0.089) (0.269) (0.187)

δ 0.484
(0.161)

σ2
1 3.949

(1.216)

σ2
2 20.782

(5.132)

p11 0.962 0.985 0.985
(0.022) (0.009) (0.011)

p22 0.973 0.989 0.988
(0.018) (0.010) (0.011)

ν–1 0.260 0.277 0.283
(0.066) (0.068) (0.069)

Notes. Standard errors in parentheses. Standard ARCH represents the model associated with equa-
tion [2], for δ = 0. MSMV denotes the model corresponding to equations [4] and [6]. MSM-
ARCHV represents the model corresponding to equations [4] and [7]. Finally, MSM-GARCHV re-
presents the model associated with equations [4] and [8].

Source: Own elaboration.



equation [2], the MSMV model of equations [4] and [6], the MSM-ARCHV
model of equations [4] and [7] and, finally, the MSM-GARCHV model of equa-
tions [4] and [8]. In the case of the regime-switching specifications, the inverse of
the degrees of freedom ν of the t-distribution is presented. Hence, testing for con-
ditional normality is equivalent to testing whether ν–1 differs significantly from
zero. The convergence to the maximum values reported in the table is robust with
respect to a broad range of start-up conditions.

In all cases the parameters are significantly different from zero. In particular,
the estimated value for autoregressive coefficient ϕ indicates the existence of rela-
tive persistence in the term evolution of the VIX index. Importantly, the persis-
tence coefficient ϕ corresponding to the regime-switching models is lower than
the coefficient associated with the standard ARCH model. This result is in line
with the findings of Perron (1989) that the existence of structural breaks in the
mean make it more difficult to reject the null of a unit-root, that is, permanent per-
sistence of shocks in the mean. In this sense, some part of the persistence includ-
ed in ϕ under the standard ARCH specification may be spurious, reflecting the ex-
istence of two different regimes corresponding to the mean of the VIX index.

Regarding the regime-switching specifications, the estimation algorithm is able
to identify the existence of the two volatility regimes. Furthermore, the estimated
values corresponding to the mean values of the VIX index in each of the regimes
under the MSMV model, under the MSM-ARCHV model and under the MSM-
GARCHV are of the same order of magnitude. The estimated variance of the VIX
index under the MSMV model is much higher in the high volatility regime than in
the low volatility regime. This result is consistent with the monthly evolution of the
VIX index as shown in Figure 1, where the index is more volatile in the periods in
which it reaches the maximum levels. Note that this result is also consistent with the
existence of an upward-sloping skew (positive skew) for the implied volatility cor-
responding to the VIX index options market, as reported by Sepp (2008).

Since in all the regime-switching specifications the estimated values for p11 and
p22 lie within the unit circle, the Markov chain corresponding to the state variable is
irreducible and ergodic. Nevertheless, both regimes are particularly persistent.

Recall that, from equation [3], the unconditional variance under the standard
ARCH model and under the MSM-ARCHV model is given by:
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σ α
θ

2

1
=

−
Hence, the estimated unconditional variance under the standard ARCH mo -

del is 17.193 whereas, in the case of the MSM-ARCHV model, the estimated va -
lue is equal to 19.820. On the other hand, under the MSM-GARCHV model, the
unconditional variance takes the following form:

σ α
θ δ

2

1
=

− +( )
and, therefore, we have that the estimated value associated with the unconditional
variance under the MSM-GARCHV specification is 19.516, which is very close
to the estimation corresponding to the MSM-ARCHV model.



3.2. Empirical performance
Table 2 reports the in-sample and out-of-sample one-month-ahead prediction

errors. In particular, it provides the root mean square errors (RMSE), as well as
the mean absolute errors (MAE) and the mean errors (ME) corresponding to the
models considered in this article6.

Panel A of Table 2 provides the in-sample performance measures and panel
B reports the out-of-sample measures. The results show that the four models pro-
vide similar in-sample fit, whereas the MSM-ARCHV model exhibits better out-
of-sample performance in terms of RMSE and in terms of MAE.

For all the specifications, the ME is positive, indicating that, on average, the mo -
dels generate an estimated level for the VIX index that is lower than the true value.

Let us consider the density function associated with the VIX index based on
data obtained until the previous period f(Vt |Ωt–1; ω). This density is the normal
density function for the standard ARCH model, whereas it coincides with the
Student-t density for the MSMV, the MSM-ARCHV and the MSM-GARCHV
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Table 2: COMPARING IN-SAMPLE AND OUT-OF-SAMPLE EMPIRICAL PERFORMANCE

Dependent variable: VIX index

Panel A
In-sample period: January 1990 - October 2009

RMSE MAE ME

Standard ARCH model 4.014 2.665 0.460
MSMV model 4.012 2.613 0.670
MSM-ARCHV model 4.054 2.578 0.803
MSM-GARCHV model 3.983 2.561 0.682

Panel B
Out-of-sample period: November 2009 - September 2010

RMSE MAE ME

Standard ARCH model 5.096 4.275 0.770
MSMV model 4.995 4.223 0.792
MSM-ARCHV model 4.763 4.047 0.628
MSM-GARCHV model 4.818 4.131 0.449

Source: Own elaboration.

(6) Regarding the out-of-sample period, I estimate the model each month incorporating the last
observation and I make the forecast for the next month.



specifications. The probability integral transform with respect to this density is
defined as7:
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(7) Note that, since we are modeling the level of the VIX index using the normal distribution and
the Student-t distribution, it is theoretically possible to obtain negative values for the VIX index.
An alternative approach would be to consider the logarithm of the VIX index instead of its level.
(8) I thank an anonymous referee for this consideration.
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Diebold et al. (1998) show8, under general regularity conditions, that, if the
sequence of densities {f(Vt |Ωt–1; ω)}T

t=1 coincides with the true density for each t =
1, …, T, then:

Therefore, if the theoretical model coincides with the true model, then the
cumulative distribution function corresponding to the sequence of probability in-
tegral transforms associated with the theoretical model should coincide with the
45-degree line within the interval [0, 1].

Figure 3 shows the effective distribution function corresponding to the prob-
ability integral transforms for the models considered during the period January
1990 to October 2009. For each model, the dotted line represents the effective cu-
mulative distribution function, whereas the solid line denotes the theoretical cu-
mulative distribution function under the assumption that the sequence of probabil-
ity integral transforms is iid U (0, 1).

Figure 3 shows that the consideration of a Markov-switching framework, to-
gether with the Student’s t-distribution for the evolution of the VIX index is an
improvement with respect to the standard ARCH specification associated with the
Gaussian distribution.

One of the advantages of using a Markov chain to characterize the evolution
of the state variable is that it is possible to estimate the probability of being in
each regime given observations obtained through that date. For instance, the prob-
ability of being in the high volatility regime based on data obtained through the
current period is given by:

p z p s p st t t t t t2 2 4| ; | ; |=( ) = =( ) + =Ω Ω Ωω ω ;;ω( )
Moreover, let us denote by ht|τ the (4 × 1) vector whose ith element is p(st = i

|Ωτ; ω). For t > τ, this element represents a forecast about the regime for some fu-
ture period whereas, for t < τ, it denotes the smoothed inference about the regime
the process was in at a date t based on data obtained through some later date τ.
Kim (1994) shows that, for the MSMV model, as well as for the MSM-ARCHV
model and for the MSM-GARCHV model, it is possible to calculate the smoothed
probabilities using the following algorithm:

h h P h ht T t t t T t t| |

'

| |
= ⋅ ( )⎡

⎣
⎤
⎦÷( )+ +

1 1
[14]



where the sign (÷) represents element-by-element division. The smoothed proba-
bilities can be then calculated iterating backward on the previous expression.
Therefore, it is possible to evaluate equation [14] at the maximum likelihood esti-
mators corresponding to the parameters of the models to obtain the smoothed
probability of being in the high volatility regime. Panel a of Figure 4 reports the
estimated smoothed probability of being in the high volatility regime for the
MSMV model corresponding to the period January 1990 to October 2009, where-
as panel b exhibits the smoothed probability associated with the MSM-ARCHV
model. Finally, panel c provides the smoothed probability of being in the high
volatility regime corresponding to the MSM-GARCHV model.
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Figure 3: CUMULATIVE DISTRIBUTION FUNCTIONS CORRESPONDING TO THE

PROBABILITY INTEGRAL TRANSFORMS ASSOCIATED WITH THE STANDARD

ARCH MODEL, THE MSMV MODEL, THE MSM-ARCHV
SPECIFICATION AND THE MSM-GARCHV MODEL

For each model the dotted line represents the effective cumulative distribution function, whereas
the solid line denotes the theoretical cumulative distribution function under the assumption that the
sequence of probability integral transforms is iid U (0,1).

Source: Own elaboration.



In general, the three models identify the changes of regime produced in the
evolution of the VIX index. Nevertheless, the specifications corresponding to the
MSM-ARCHV model and to the MSM-GARCHV model provide more stable
regimes. Panels b and c of Figure 4 show that the sample period starts in the low
volatility regime which lasts until July 1996. The high volatility regime includes the
Asian financial crisis which started in 1997, the Russian financial crisis of 1998, as
well as the bursting of the IT bubble in 2000. This high volatility regime predomi-
nates until October 2003. In this month there is a new switch to the low volatility
re gi me but, between July and August 2007, there is a sudden shift to the high vo -
latility regime coinciding with the beginning of the international financial crisis,
originated in the credit market and characterized by violent movements and epi-
demics of contagion from market to market affecting even the real economy.
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Figure 4: ESTIMATED SMOOTHED PROBABILITIES OF BEING IN THE HIGH VOLATILITY

REGIME CORRESPONDING TO THE MSMV MODEL, THE MSM-ARCHV
MODEL AND THE MSM-GARCHV MODEL

Source: Own elaboration.



Importantly, for the MSM-ARCHV model as well as for the MSM-GARCHV
model, none of the estimated probabilities lie within the interval [0.30, 0.70]
while for the MSMV model, this percentage is 6.30%. This fact indicates that the
algorithm usually arrives at a fairly strong conclusion about the probability of
being in a particular regime for the VIX index.

Another interesting feature of the algorithm is that it is possible to estimate
the average persistence of each regime. Assume that the VIX index is in the low
volatility regime (zt = 1). The probability of staying in this regime is p11, whereas
the probability of switching to the high volatility regime (zt = 2) is given by 1 – p11.
Let us consider the geometric variable X as the number of months which are re-
quired to switch from the low volatility regime to the high volatility regime. The
probability function is given by:
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whereas the moment-generating function is:

Therefore, we have the following expression for the average persistence of
the low volatility regime:

Let us consider the specification associated with the MSM-ARCHV model.
Given the estimated value corresponding to p11, the average persistence of the low
volatility regime is 66.4225 months. Analogously, the average persistence of the
high volatility regime is 90.969 months.

3.3. Parameters stability
An interesting question is to analyze the stability of the estimated parameters

across the different periods considered in the article. Table 3 displays the estima-
tion results corresponding to the whole sample period, from January 1990 to Sep-
tember 2010. The comparison of the estimated values corresponding to the para-
meters of the different models in Tables 1 and 3 shows that, for all the models, the
parameters are quite stable. Moreover, the estimated parameters displayed in Table 3
are significantly different from zero at usual significance levels. The exception is
the parameter corresponding to the MSM-GARCHV model which is not statisti-
cally significant.

Moreover, the ARCH parameter θ is not significantly different from zero at
the 5% significance level. Taking into account these results and given that a parsi-
monious specification is always preferred9, the MSM-ARCHV model could be a
better choice to characterize the behavior of the VIX index.

(9) See Box and Jenkins (1976).
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Table 3: ESTIMATION RESULTS

Dependent variable: VIX index
Number of observations: 249
Sample period: January 1990 - September 2010

Standard MSM- MSM-
ARCH MSMV ARCHV GARCHV

μ 17.844
(1.534)

μ1 14.031 13.792 13.877
(0.639) (0.525) (0.566)

μ2 20.817 21.954 22.219
(1.276) (0.789) (0.929)

ϕ 0.802 0.735 0.641 0.682
(0.022) (0.052) (0.038) (0.042)

α 9.772 6.563 2.255
(0.852) (1.850) (1.655)

θ 0.456 0.726 0.391
(0.092) (0.273) (0.205)

δ 0.523
(0.225)

σ2
1 3.884

(1.137)

σ2
2 21.741

(4.814)

p11 0.965 0.985 0.985
(0.021) (0.009) (0.010)

p22 0.977 0.989 0.988
(0.016) (0.010) (0.011)

ν–1 0.241 0.271 0.279
(0.063) (0.065) (0.066)

Notes. Standard errors in parentheses. See also notes to Table 1.

Source: Own elaboration.



4. CONCLUSION

In recent years, volatility has become an asset class and derivatives on vola -
tility have become quite common. The Chicago Board Options Exchange (CBOE)
calculates the VIX index, which evolves stochastically through time and exhibits
relatively persistent changes of level due to the existence of news and/or the finan-
cial crisis. To take account of this behavior, in this article, I have presented a
regime-switching model to characterize the evolution of the VIX index. In this
model, the mean of the index depends on the state of the world (high volatility and
low volatility) and the latent variable which determines the volatility regime is gov-
erned by an unobserved Markov Chain. The innovation is assumed to have a t-dis-
tribution allowing for deviations from normality in the distribution corresponding to
the VIX index. Note that, in the case of normality, a large innovation in the low
volatility period will lead to an earlier switch to the high-volatility regime, even if it
is a single outlier in an otherwise quiet period. The t-distribution enhances the sta-
bility of the regimes and includes the normal distribution as the limiting case.

To account for the observed persistence corresponding to the VIX index, I have
considered an AR(1) specification for the evolution of this index where the mean is a
function of the volatility regime. Since the evolution of the VIX index seems to indi-
cate that its conditional variance is not constant over time, I have considered three
different versions of the model. Under the first one, called Markov-switching in
mean and variance (MSMV) model, the variance of the index is a function of volatil-
ity regime, whereas the second version, denoted as Markov-switching in mean and
ARCH in variance (MSM-ARCHV) model, includes an ARCH specification for the
conditional variance of the VIX index. Finally, the third version of the model extends
the second specification and allows for GARCH effects in the conditional variance
associated with the VIX index. This specification is denoted as Markov-switching in
mean and GARCH in variance (MSM-GARCHV) model.

For comparison, I also have considered a standard Gaussian AR specification
for the mean of the VIX index that allows for ARCH and GARCH effects in the
conditional variance.

The empirical results show that the regime-switching specifications are able to
characterize the volatility regimes corresponding to the VIX index quite accurately.
In particular, the high volatility regime identifies the Russian financial crisis in
1998, the bursting of the IT bubble in 2000 and the credit crisis that started in mid
2007. Moreover, the estimated volatility corresponding to the VIX index is much
higher in the high volatility regime. Nevertheless, although all the models provide a
similar in-sample fit, the MSM-ARCHV model and the MSM-GARCHV model
provide better out-of-sample performance, as well as more stable regimes, indicating
the importance of considering the existence of regimes in the mean and GARCH ef-
fects in the conditional variance corresponding to the VIX index. However, some of
the parameters associated with the MSM-GARCHV model are not significantly dif-
ferent from zero for some sample periods, indicating that a more parsimonious
specification, such as the MSM-ARCHV model, may be preferable.

Importantly the information provided by the model can be a useful tool for
investment and hedging decisions regarding volatility. In particular, it is possible
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to set confidence intervals corresponding to the mean of the VIX index in each
regime, so that if the index is above (below) the upper (lower) band corresponding
to the mean in the high (low) volatility regime, it could be attractive to set a short
(long) volatility position.

The results obtained in this article also have important implications for the
development of realistic valuation models that correctly capture the features of the
underlying volatility index. In particular, stochastic volatility, fat-tailed distribu-
tions and a stochastic mean volatility level. This last feature can be modeled using
a stochastic central tendency, introduced by Balduzzi et al. (1998) for interest rate
modeling, and used, among others, by Egloff et al. (2006) to characterize the be-
havior of volatility.

Finally, it could be of interest to analyse the joint dynamics of the VIX index
and the Standard and Poor’s 500 index but this is left for future research.

APPENDIX A

Deriving the log-likelihood function for Vt:
Let L(ω) denote the log-likelihood function evaluated at the true parameter

vector. This function takes the following form:
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where f(Vt |Ωt–1; ω) is the density function associated with the VIX index based
on data obtained through the previous period. Let f(Vt |st = j, Ωt–1; ω) = kj

t (for j =
1, 2, 3, 4) denote the density function of the VIX index given the current value of st.
This function depends on the level of the index in the previous period and takes
the following values:

where σ 2
t is given by equation [6] for the MSMV model, by expression [7] for the

MSM-ARCHV model and, finally, by equation [8] for the MSM-GARCHV speci-
fication. It is possible to express f(Vt |Ωt–1; ω) as follows10:

(10) To verify this result, let us consider the joint distribution of variables X and Y given variable Z.
It is possible to obtain the marginal distribution of Y given Z by integrating the joint conditional dis-
tribution with respect to variable X: f (y | z) = ∫ f (x, y | z) dx = ∫ f (y | x, z) f (x | z) dx = Ex [f (y | x, z)].



where 1 is a (4 × 1) vector of ones, kt is another (4 × 1) vector, which accounts for
the density functions associated with the VIX index given the values correspond-
ing to st. Finally, the symbol ° represents element-by-element multiplication. The -
refore, the log-likelihood function is given by:
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Probability of being in each regime based on data obtained through the cur-
rent period:

From the Bayes’ theorem, it is possible to obtain the following expression for
the probability of being in regime j in period t, given observations obtained through
that date kj

t|t:

where p(st = j |Ωt–1; ω) = ht|t–1, f(Vt |st = j, Ωt–1; ω) = kj
t and f(Vt |Ωt–1; ω) is given

by equation [15]. Hence, the previous equation can be expressed in vector form as
follows:
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RESUMEN
Este artículo presenta un modelo basado en cadenas de Markov para ca-
racterizar el comportamiento del índice VIX de volatilidad calculado por
el Chicago Board of Exchange (CBOE). Se consideran dos posibles esta-
dos: volatilidad baja y volatilidad alta y la especificación del modelo per-
mite considerar la existencia de persistencia, así como desviaciones de la
normalidad en la evolución del índice VIX. Puesto que la evolución de
dicho índice parece indicar que su varianza condicional no es constante,
se consideran dos versiones del modelo. En la primera, la varianza del ín-
dice es función del régimen de volatilidad, mientras que en la segunda se
consideran especificaciones ARCH y GARCH para la varianza condicio-
nal del índice. Los resultados empíricos muestran que el modelo ajusta
con bastante precisión los regímenes de volatilidad del índice VIX. Ade-
más, la información que proporciona el modelo es una herramienta útil
para tomar decisiones de inversión, así como para propósitos de cobertura
de los riesgos asociados a la volatilidad de un determinado activo.

Palabras clave: índice VIX, cadenas de Markov, volatilidad realizada,
volatilidad implícita, regímenes de volatilidad.

Clasificación JEL: C22, G12, G13.
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